Inorganica Chimica Acta, 30 (1978) L321–L323 ©Elsevier Sequoia S.A., Lausanne – Printed in Switzerland

Complexes of Organometallic Compounds. XLIX. A Mössbauer-Zeeman Spectroscopic Study of Glycylglycinato-O,N,N(2-) Diphenyltin(IV), and the Pointcharge Model Rationalization of the Quadrupole Splittings of Some Glycylglycinato-O,N,N(2-) Diorganotin(IV) Complexes

R. BARBIERI and L. PELLERITO

Istituto di Chimica, Università di Palermo, I-90123 Palermo, Italy

F. HUBER

Lehrstuhl für Anorganische Chemie II, Universität Dortmund, Postfach 500500, 4600 Dortmund 50, FRG

Received June 27, 1978

Novel complexes of Alk₂Sn^{IV} mojeties with glycylglycine in the dianionic form, formulated as glycylglycinato-O,N,N(2-) dialkyltin(IV), Alk₂Sn-(Gly-Gly), have been recently reported [1]. Their configuration has been assumed to be of trigonal bipyramidal type, with carbon atoms bound to tin located in the trigonal plane, on the basis of magnitude of their Mössbauer parameters, nuclear quadrupole splittings, ΔE [1]. By X-ray diffractometry it has been subsequently demonstrated that this structure is present in Ph₂Sn(Gly-Gly) [2]. Then, it seemed opportune to further rationalize the configurational hypothesis on Alk₂Sn(Gly-Gly), chosing to the purpose the point charge model treatment of experimental ΔE 's [3]. The latter work is reported in the present letter.

The Mössbauer–Zeeman spectrum of Ph₂Sn(Gly-Gly) has been determined (Fig. 1), from which ΔE with its proper sign, as well as the asymmetry para-

meter
$$\eta = \frac{V_{xx} - V_{yy}}{V_{zz}}$$
, have been obtained [4] and

Figure. 1. The Mössbauer-Zeeman spectrum of $Ph_2Sn(Gly-Gly)$, determined at 4.2 °K in a transversal magnetic field of 6 T by P.C.M.U., Harwell. Full line is the computer fitting of experimental points.

are reported in Table I. Point charge model estimates of these parameters have been extracted for the ideal trigonal bipyramidal structure of Fig. 2, using Eqns. (1-3) for calculating $V_{\alpha\alpha}$ (the principal components of the electric field gradient tensor at the Sn nucleus) and Eqn. (4) for ΔE [3-5]:

$$V_{kk} = -2[Ph]^{tbe} - [N]^{tbe} + 2[O]^{tba} + 2[N]^{tba}$$
(1)

$$V_{jj} = \frac{5}{2} [Ph]^{tbe} - [N]^{tbe} - [O]^{tba} - [N]^{tba}$$
(2)

$$V_{xx} = -\frac{1}{2} [Ph]^{tbe} + 2 [N]^{tbe} - [O]^{tba} - [N]^{tba}$$
 (3)

TABLE I. Experimental Quadrupole Splittings, ΔE , Asymmetry Parameter, η , and Point Charge Model Estimates.

Compound ^a	ΔE_{exp} , mm s ⁻¹	Refs.	ΔE_{calcd}^{b}	b ¶calcd
Ph ₂ Sn(Gly-Gly) ^c	$-2.235 (\eta = 0.805)$	d	(-) 2.70	0.84
Me ₂ Sn(Gly-Gly)	3.29	1)		
Bu ₂ ⁿ Sn(Gly-Gly)	3.19	1 {	(-) 3.09	0.91
$Oct_2^nSn(Gly-Gly)$	3.43	1)		

١

^aGly-Gly is glycylglycinato-O, N, N(2-). ^bFor a regular trigonal bipyramidal structure, Fig. 2. P.q.s.'s values, mm s⁻¹, used in the calculations are [3]: {Ph}^{tbe} = -0.98; {Alk}^{tbe} = -1.13; {N}^{tbe} = -0.30 (see text); {O}^{tba} = + 0.075 (*i.e.*, the p.q.s. of axially coordinated acetic acid [3]); {N}^{tba} = +0.01 (the p.q.s. of axial piperidine [3]). ^cIsomer shift with respect to R.T. CaSnO₃ is $\delta = 1.037$ mm s⁻¹. ^dThis work.

Figure 2. The idealized trigonal bipyramidal configuration of $Ph_2Sn(Gly-Gly)$, corresponding to the real molecular structure [2], assumed also for $Alk_2Sn(Gly-Gly)$. x, j, k are the principal components of the e.f.g. tensor (see text).

$$\Delta E = \frac{1}{2} e^2 Q V_{zz} \left(1 + \frac{\eta^2}{3} \right)^{\frac{1}{2}}$$
(4)

Q is the quadrupole moment of the nucleus, negative for ¹¹⁹Sn, so that the signs of V_{zz} and ΔE are opposite. Partial quadrupole splittings, p.q.s., used in the calculations of $V_{\alpha\alpha}$ were expressed as follows [3]:

{L}^{tba} =
$$\frac{1}{2}e^2|Q|([L]^{tba} - [Cl, Br]^{tba}), mm s^{-1}$$
 (5)

{L}^{tbe} =
$$\frac{1}{2}e^2$$
|Q|([L]^{tbe} - $\frac{4}{3}$ [Cl, Br]^{tba}), mm s⁻¹ (6)

where superscripts tba and the refer to trigonal bipyramidal axial and equatorial point charges, respectively [3]. Numerical values of $\{Ph\}^{tbe}$, $\{O,N\}^{tba}$ are reported in Table I, footnote c. The value $\{N\}^{tbe} =$ +0.21 was first selected, according to the relationship [3]:

$$3\{N\}^{\text{tbe}} - 4\{N\}^{\text{tba}} = 0.58 \text{ mm s}^{-1}$$
 (7)

The following data were calculated (k, j, x as in Fig. 2):

$$V_{zz} = V_{jj} = -2.74(5); V_{yy} = V_{kk} = +1.92; V_{xx} = +0.82(5); \eta = 0.40; \Delta E = +2.82;$$

which are inconsistent with experimental (Table I). In particular, the negative sign of experimental ΔE implies that V_{zz} must be positive, *i.e.*, electronic charge is concentrated in the xy plane. In the point charge model formalism, this is realized by increasing the donating power of equatorial nitrogen (*i.e.*, giving negative values to {N}^{tbe}), other p.q.s.'s being invariant. Inversion of the sign of ΔE takes place for {N}^{tbe} between -0.20 and -0.25 mm s⁻¹, when V_{kk} = V_{zz} and V_{jj} = V_{yy} (Fig. 2); a reasonable set of ΔE and η values was obtained for {N}^{tbe} = -0.30 mm s⁻¹ (Table I).

A slightly better accordance of calculated with experimental ΔE and η was reached by a computer procedure [6] using the actual crystallographic angles at tin in Ph₂Sn(Gly-Gly) [2]. For example, with {Ph}^{tbe} and {N,O}^{tba} as in Table I, footnote c, and {N}^{the} = -0.25 mm s^{-1} , it results $\Delta E = -2.64$ and $\eta = 0.84$ (p.q.s.'s being considered absolute). This limited improvement depends on the quasi-regular structure of the trigonal plane in Ph₂Sn(Gly-Gly) [2], as well as from the fact that apical p.q.s.'s used here, being nearly zero, would not substantially alter the calculated data whether axial distortions [2] are taken into account. It is also obvious that further improvements may be obtained by decreasing axial p.q.s.'s while maintaining the difference $\sim -0.30 \text{ mm s}^{-1}$ between {N,O}^{tha} and {N}^{the}.

All things considered, we prefer to keep in the present context estimations according to the literal point charge model and a regular structure, using as far as possible p.q.s.'s extracted from ample selections of experimental data [3], which allows wide systematics [3]. It may be objected that in this way the accepted limiting difference of 0.4 mm s⁻¹ between ΔE_{calcd} and ΔE_{exp} [3] is exceeded for Ph₂Sn-(Gly-Gly) (Table I). This is due to the fact that ΔE_{exp} of the latter compound, although not exceptional [7], is lesser than values commonly determined for Ph₂SnL₃ species [3, 8]; *i.e.*, the imbalance between axial and equatorial electrons is lesser than usual, for our compound.

At this point, the magnitude of $\{N\}^{\text{tba}}$ we selected here $(-0.30 \text{ mm s}^{-1})$ has to be justified, being at variance with both the procedure suggested from obtaining $\{L\}^{tbe}$ from $\{L\}^{tba}$ (see in the preceding) and quoted $\{L\}^{\text{tbe}}$ data [3]. It is first observed that σ donor power of peptide nitrogen has to be larger than that of amino nitrogen (Fig. 2). In fact, the latter is easily shown by an empirical electronegativity equalization procedure [9] on the dianion (-)OOC- $CH_2 - N^{(-)} - CO - CH_2 - NH_2$, for which a valence bond structure is considered with resonance in the peptide bonds only, in accordance with the crystallographic data of the coordinated ligand [2] (formal charges being $Q_{N_{pept}} = Q_{O_{pept}} = -0.50$, and bond orders 1.50 for $(C \cdot \cdot \cdot \cdot N)_{pept}$ and $(C \cdot \cdot \cdot \cdot O)_{pept}$. After equalization by the CHELEQ program [9], it is obtained $Q_{N_{pept}} = -0.46$ and $Q_{N_{amino}} = -0.20$, which means that equatorial N would release more negative charge into the neighborhood of tin than apical N, on coordination (Fig. 2). Besides the bond length Sn-N_{pept} is quite short [2], which suggests a consistent s character in that bond as well as its involvement into the π -delocalization of the peptide group [2]. The latter circumstances would concentrate negative charge in the trigonal plane in the proximity of the tin nucleus, so that $\{N\}^{tbe}$ would be not very much different from {Ph}^{tbe}. Lastly, Mössbauer ΔE values of stannylamines Alk₃SnNAlk₂ and Me₃SnN(CH₂)_n [10-12], four coordinate monomers [11] where Sn-N bonds correspond to Sn-N_{pept} in Ph₂Sn(Gly-Gly), suggest a noticeable release of negative charge from the NAlk₂ group to

Sn. The point charge model calculation of the p.q.s. due to NAlk₂ in regular tetrahedral [5] Alk₃SnAlk₂, $\Delta E = -0.95$ (average of eight data [10-12]) gives ½ eq|Q|([NAlk₂]^{tet} - [hal]^{tet}) = -0.89 mm s⁻¹, which differs by only 0.48 mm s⁻¹ from p.q.s. of Alk^{tet} [5].

Having rationalized ΔE_{exp} and η of Ph₂Sn(Gly-Gly), and demonstrated the reliability of the p.q.s.'s employed in the related point charge model treatment, the corresponding parameters of Alk₂Sn(Gly-Gly) have been analogously calculated on the hypothesis of regular trigonal bipyramidal structures and are reported in Table I, $V_{\alpha\alpha}$ being as follows: $V_{zz} = V_{kk} = +2.73, V_{yy} = V_{jj} = -2.61, V_{xx} = -0.12$ (Fig. 2). The satisfactory agreement between ΔE_{exp} and ΔE_{ealed} (Table I) confirms the assumed structure [1]. It must be taken into account that the sign of ΔE for Alk₂Sn(Gly-Gly) could be inverted with respect to our estimate (negative, Table I) in the case the CSnC angle exceeds 120° [13, 14]. On the other hand, there are not a priori reasons to invoke such an opening of this angle in the present context. For example, in the trigonal bipyramidal complex Me₂Sn-(ONO), where ligand atoms belong to the dianion of 2-hydroxy-N-(2-hydroxybenzylidene)aniline, the angle CSnC enlarges to 138.25° [15] with respect to 121.4° in the corresponding Ph₂Sn^{TV} derivative [16] owing to intermolecular interactions through threecoordinating oxygen [15]. This seems unlikely for Alk₂Sn(Gly-Gly), provided in this compound the intermolecular H-bonding between amino nitrogen and carbonyl oxygens, taking place in Ph₂Sn(Gly-Gly) [2], is maintained.

It is concluded that the structure of Alk₂Sn(Gly-Gly) is very probably trigonal bipyramidal, such as that of the Ph₂Sn^{IV} derivative. The ligating behaviour of the dipeptide glycyl-glycine towards R_2Sn^{IV} moieties is then quite dissimilar from that of amino acids [17], owing to the acidity of the peptide hydrogen atom.

Acknowledgements

The financial supports by NATO (Grant No. 812), and C.N.R. (Roma) through a contract for inter-

References

- 1 L. Pellerito, M. T. Lo Giudice, G. Ruisi, N. Bertazzi, R. Barbieri and F. Huber, *Inorg. Chim. Acta*, 17, L21 (1976).
- 2 F. Huber, H.-J. Haupt, H. Preut, R. Barbieri and M. T. Lo Giudice, Z. Anorg. allg. Chem., 432, 51 (1977).
- 3 G. M. Bancroft, V. G. Kumar Das, T. K. Sham and M. G. Clark, J. Chem. Soc. Dalton, 643 (1976).
- 4 R. L. Collins and J. C. Travis, "The Electric Field Gradient Tensor", in "Möss. Effect Meth.", I. J. Gruverman Ed., Plenum Press, New York (1967), Vol. 3, p. 123; W. M. Reiff, Coord. Chem. Rev., 10, 37 (1973).
- 5 G. M. Bancroft and R. H. Platt, "Mössbauer Spectra of Inorganic Compounds: Bonding and Structure", in "Adv. Inorg. Chem. Radiochem.", H. J. Emeléus and A. G. Sharpe Eds., Acad. Press, New York (1972); vol. 15, p. 59.
- 6 R. Barbieri, G. Alonzo, H.-J. Haupt and H. Preut, Inorg. Chim. Acta, 22, 253 (1977).
- 7 R. H. Herber and R. Barbieri, Gazz. Chim. Ital., 101, 149 (1971).
- 8 R. V. Parish and R. H. Platt, Inorg. Chim. Acta, 4, 65 (1970).
- 9 W. L. Jolly and W. B. Perry, J. Am. Chem. Soc., 95, 5442 (1973); id., Inorg. Chem., 13, 2686 (1974); W. B. Perry and W. L. Jolly, "The Calculation of Atomic Charges in Molecules by an Electronegativity Equalization Procedure: a description of program CHELEQ", LBL-3520, Contract W-7405-ENG-48 of U.S. At. En. Com., November 1974.
- 10 R. F. Dalton and K. Jones, Inorg. Nucl. Chem. Letters, 5, 785 (1969).
- 11 P. G. Harrison and J. J. Zuckerman, J. Organometal. Chem., 55, 261 (1973).
- 12 M. E. Bishop and J. J. Zuckerman, Inorg. Chem., 16, 1749 (1977).
- 13 R. V. Parish and C. E. Johnson, J. Chem. Soc. A, 1906 (1971).
- 14 J. N. R. Ruddick and J. R. Sams, J. Chem. Soc. Dalton, 470 (1974).
- 15 H. Preut, F. Huber, H.-J. Haupt, R. Cefalù and R. Barbieri, Z. Anorg. allg. Chem., 410, 88 (1974).
- 16 H. Preut, F. Huber, R. Barbieri and N. Bertazzi, Z. Anorg. allg. Chem., 423, 75 (1976).
- 17 W. T. Hall and J. J. Zuckerman, Inorg. Chem., 16, 1239 (1977).